Acoustic Radiation Of An Automotive Component Using Multi-Body Dynamics

University essay from KTH/Fordonsdynamik

Abstract: An important facet of creating high-quality vehicles is to create components that are quiet and smooth under operation. In reality, however, it is challenging to measure the sound that some automotive components make under load because it requires specialist facilities and equipment which are expensive to acquire. Furthermore, the motors used in testbeds drown out the noise emitted from much quieter components, such as a Power Transfer Unit (PTU). This thesis aims to solve these issues by outlining the steps required to virtually estimate the acoustic radiation of a PTU using the Transmission Error (TE) as the input excitation via multi-body dynamics (MBD). MBD is used to estimate the housing vibrations, which can then be coupled with an acoustic tool to create a radiation analysis. Thus, creating a viable method to measure the acoustic performance without incurring significant expenses. Furthermore, it enables noise and vibration analyses to be incorporated more easily into the design stage. This thesis analysed the sound radiated due to gear whine which arises due to the TE and occurs at the gear mesh frequency and its multiples. The simulations highlighted that the TE can be accurately predicted using the methods outlined in this thesis. Similarly, the method can reliably obtain the vibrations of the housing. The results from this analysis show that at 2000 rpm the PTU was sensitive to vibrations at 500, 1000 and 1500 Hz, the largest amplitude being at 1000 Hz. Furthermore, the Sound Power Level (SWL) was proportional to the vibration amplitudes in the system. Analytical calculations were conducted to verify the methods and showed a strong correlation. However, it was concluded that experiments are required to further verify the findings in this thesis.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)