Bio-based resins for digital light processing : Mechanical and degradable properties

University essay from KTH/Materialvetenskap

Abstract: Thermosets are appropriate materials for various applications due to benefits such as heat resistance and good mechanical properties. The disadvantages of traditional thermosets from a sustainable manufacturing perspective are that they are usually derived from fossil resources, and also have permanent cross-linked networks that are difficult to break, making them non-recyclable. It is therefore of great interest to find bio-based alternatives, especially ones that can be recycled or bio-degraded. In this project four bio-based photocurable resins, meant for 3D printing thermosets, were characterized by their mechanical properties and chemical degradation. They were designed with esters and imine groups in order to use dynamic, reversible bonds to attempt mechanical recycling and chemical degradation. The resins were composed of methacrylated eugenol, methacrylated PHB-diol and Schiff base methacrylated extended vanillin. The latter provided good thermal stability, solvent resistance and mechanical properties to the thermosets. The mechanical recycling was able to produce cohesive thermoset films, successfully reforming broken bonds, but the mechanical properties decreased substantially from the process. Chemical degradation of the thermosets could be performed, but further use of the degraded material was not examined.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)