Determining the Influence of the Type of Shielding Gas during Additive Manufacturing of an Aluminum Alloy by Monitoring the Process Qualitatively and Analyzing Process Byproducts Quantitatively

University essay from KTH/Materialvetenskap

Abstract: This thesis analyzes the influence of process gases on the formation and the characteristics of process byproducts that emerge during additive manufacturing of an aluminum alloy belonging to the 2000 series.  In order to address the influence, four pure gases, argon, nitrogen, helium, and carbon dioxide, were used as a shielding gas on the same parameter sets.  The interaction of the laser beam with the powder bed under each shielding condition was recorded by a camera.  The humidity, particle size distribution, and chemistry of the spatters produced after each job was analyzed.  The chemistry of small cylinders printed, was determined.  The density of the produced cubic samples was determined following the Archimedes principle, as well as through the analysis of the  cross-section.   Lastly,  the  embedded  and  polished  samples  were  etched,  and  the penetration depth of the laser was determined.  Under argon and nitrogen shielding, the process looked the same and the produced spatters show similar results.  Under helium shielding, less incandescent spatters were seen, and the particle size distribution is smaller than under argon or nitrogen. Carbon dioxide resulted in the highest number of incandescent particles and a change of the color of the rays from red to yellow.  The chemical analysis shows that a slight increase of nitrogen in the spatters and the bulk material can be seen under nitrogen shielding.  Oxygen and hydrogen content was sim- ilar under argon, nitrogen, and helium shielding.  Carbon dioxide shielding resulted in the highest oxygen content in the spatter and the bulk material. The density is highest under helium shielding, and lowest under carbon dioxide shielding.  Under argon and nitrogen shielding, the density was similar.  The study concluded that the choice of a process gas is not an arbitrary one but should be selected with care.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)