Monitoring Vehicle Suspension Elements Using Machine Learning Techniques

University essay from KTH/Spårfordon

Abstract: Condition monitoring (CM) is widely used in industry, and there is a growing interest in applying CM on rail vehicle systems. Condition based maintenance has the possibility to increase system safety and availability while at the sametime reduce the total maintenance costs.This thesis investigates the feasibility of using condition monitoring of suspension element components, in this case dampers, in rail vehicles. There are different methods utilized to detect degradations, ranging from mathematicalmodelling of the system to pure "knowledge-based" methods, using only large amount of data to detect patterns on a larger scale. In this thesis the latter approach is explored, where acceleration signals are evaluated on severalplaces on the axleboxes, bogieframes and the carbody of a rail vehicle simulation model. These signals are picked close to the dampers that are monitored in this study, and frequency response functions (FRF) are computed between axleboxes and bogieframes as well as between bogieframes and carbody. The idea is that the FRF will change as the condition of the dampers change, and thus act as indicators of faults. The FRF are then fed to different classificationalgorithms, that are trained and tested to distinguish between the different damper faults.This thesis further investigates which classification algorithm shows promising results for the problem, and which algorithm performs best in terms of classification accuracy as well as two other measures. Another aspect explored is thepossibility to apply dimensionality reduction to the extracted indicators (features). This thesis is also looking into how the three performance measures used are affected by typical varying operational conditions for a rail vehicle,such as varying excitation and carbody mass. The Linear Support Vector Machine classifier using the whole feature space, and the Linear Discriminant Analysis classifier combined with Principal Component Analysis dimensionality reduction on the feature space both show promising results for the taskof correctly classifying upcoming damper degradations.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)