The Paradigm Shift for Substations Technology within Wind Power Applications from Onshore to Floating

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Floating wind turbines are attracting more attention as more than three-quarters of the total offshore technical potential is located in deep water, leading to a growing trend in floating wind farm projects. Consequently, it becomes necessary to develop Floating Offshore Substation (FOSS) to step up voltage and efficiently transmit power to the shore with minimal losses. However, the harsh environment of the sea/ocean imposes significant challenges on the substation’s electrical equipment, which need to be addressed. This research aims to address the challenges with the primary electrical equipment and provide some recommendations and considerations within the framework of offshore wind. An in-depth literature study was conducted to describe the concepts of the floating application mechanically and electrically. The fatigue analysis theory was explained, and concrete examples were presented and evaluated. Moreover, a standard offshore substation design was presented with the primary high-voltage equipment, where the offshore considerations were highlighted based on the existing standards. Ultimately, a communication channel between the windfarm developer Vattenfall AB and the manufacturer Siemens Energy was established to enable cooperation between industries to discuss the topic, and obtain results from experts’ opinions and experiences. The literature study found that the semi-submersible platform structure performs better than other concepts in different water depths and environmental conditions. The electrical equipment onboard experiences similar equivalent damage regardless of the weight. Furthermore, some specific technical challenges and recommendations on the high-voltage equipment were identified through the mentioned cooperation. For instance, oil-immersed transformers and shunt reactors have better potential than dry-type or gas-insulated types, despite decaying the oil dielectric property due to the vibrations. High-voltage Gas Insulated Switchgear (GIS) is a preferable choice to the air-insulated types. Lastly, there is a lack of standards regarding equipment testing for floating application. Identifying a valid methodology to determine the equipment’s fatigue load capability, and alternatives to the shake table test is a necessity to make this substation happen.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)