Analysis of Channel Measurements Using a Very Large Antenna Array

University essay from Lunds universitet/Institutionen för elektro- och informationsteknik

Abstract: Accurate wireless channel models are crucial to simulate the effect of radio wave propagation in a channel on wireless communication systems. By calculating physical processing effects that signal undergoes while traveling from transmitter to the receiver, channel models help to analyze performance of wireless systems. State of the art channel model such as WINNER and COST 2100 are able to model the characteristics of conventional MIMO (Multiple-Input Multiple-Output) systems (where moderate number of antennas is used at the two sides of the link) with sufficient accuracy. However, model extensions are needed for the current models in order to be able to capture new propagation characteristics result from having massive number of antenna elements at one or both ends of the communication link. In this thesis work, a measurement campaign is performed using very large antenna array (about 7.5m long) in order to study key propagation characteristics for massive MIMO. The channel measurements are performed using two frequency bands (2.6 GHz and 5.1 GHz), vertical and horizontal antenna polarizations, directional and omni-directional antennas. Effect of aforementioned setup parameters on cluster delay and angle spreads, power slope and shadowing, number of clusters and their observation lengths are studied in this work. Also correlation among estimated cluster parameters is presented. It was observed, that antenna polarization does not have significant effect on estimated cluster parameters. On the other hand, some estimated parameters like delay and angle spread, shadowing achieve higher values using 2.6 GHz band. Impact of antenna directivity was not very significant. Results of this thesis work are important while implementing extension for cluster-based COST 2100 channel model for massive MIMO case.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)