Status Mapping of tank to grave management of Low-GWP refrigerants.

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: Refrigeration plays a vital role today in various residential, commercial, and industrial processes, requiring refrigerants to facilitate the cooling or heating processes. Over time, refrigerants have undergone significant changes to meet technological, social, environmental, and economic needs. Refrigerants' evolution can be categorized into four generations. The first three generations come from the early use of natural compounds (CO2, SO2), to the dominance of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), followed by the ozone protection era of hydrofluorocarbons (HFCs)1. However, HFCs presented new challenges due to their high Global Warming Potential (GWP), leading to the development of 4th generation refrigerants formed by hydrofluoroolefins (HFOs) like R- 1234yf. However, to minimize GHG emissions even more and phase out of high Global Warming Potential (GWP) alternatives, following the Montreal Protocol (globally) and the F-Gas Regulation (Europe), low-GWP refrigerants emerge. This group includes compounds with a GWP value below or equal to 150, such as natural refrigerants, new synthetic (R-1234yf) or older compounds (R-152a). The research gap in this MSc thesis addresses the management of particularly synthetic low-GWP refrigerants throughout their entire useful lifecycle, focusing on the tank-to-grave concept. This concept addresses the useful life of the refrigerants, starting with their procurement and charging into refrigeration and heat pump units (during manufacturing), and then their distribution, use, and end-of-life management. This, therefore, excludes the extraction of raw materials and manufacturing of refrigerants. However, the Life Cycle Assessment (LCA) approach analyses environmental impacts in all product phases (including raw materials extraction). Within this context, this thesis explores the different stakeholder procedures and activities for managing refrigerants throughout their lifetime. Different stakeholders or organizations, including heat pump/refrigeration system manufacturers, their service organizations, end-users, and end- of-life management organizations are involved in this process. Whenever possible, a representative or more from a given stakeholder category was thus interviewed. However, possible limitations such as lack of certain stakeholder involvement, limited information about some stakeholder groups, as well as the assumption of generalisability of the results obtained, are considered throughout this report. For stakeholder categories for which interviewing was not possible, literature-based mapping was conducted. Furthermore, comprehending the current legislation and standards was done as it is essential to grasp the complete process of handling of refrigerants. Additionally, as it concerns the management of refrigerants throughout their useful lifecycle, studying their potential applicability with Life Cycle Assessment (LCA) is of interest. Finally, the entire project is analysed from a sustainability perspective, exploring the advantages and disadvantages it entails. Before delving into the information about stakeholders, it is essential to establish a theoretical context related to the process of refrigerant management. The first key role is to understand Life Cycle Thinking (LCT), LCA and Material Flow Analysis (MFA) and how to apply these to the management of refrigerants. In addition, the concept of tank-to-grave management is explained, along with the various groups or organizations involved in different phases of a refrigerant's life. These groups include manufacturers, service organizations, supplier organizations, cold chain organizations, recovery organizations, reclamation organizations, disposal organizations as well as certain related associations and certifying bodies. Furthermore, given the importance of the concept of recovery in this project, its meaning is compared from the perspective of refrigerant management and waste hierarchy. Furthermore, the F-Gas Regulation and some of its articles, related to leakage control and the frequency of leakage checks according to the type of equipment used, how the recovery process should be carried out or the strategies related to market positioning and control of the use of these F-gases are studied. In addition, the Air-Conditioning, Heating and Refrigeration Institute (AHRI) standards are investigated, as they are widely used in the refrigeration sector and explain some procedures related to activities such as composition analysis or procedures to be performed with recovery equipment. Lastly, the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation and the potential implications of implementing the per-and poly-fluoroalkyl substances (PFAS) ban proposal are explored due to their significant possible impact on the refrigeration industry in future years. This is because PFAS includes almost all synthetic refrigerants. To gather information about the current situation and practices in the refrigeration sector, the research adopts a qualitative approach, centred on in-depth interviews with different stakeholders. These interviews provide valuable firsthand insights into the practices, experiences, and perceptions of stakeholders regarding the management of synthetic low-GWP refrigerants. These interviews were based on a series of questionnaires, developed, and customized within the project, according to the types of organization. Moreover, with the interviewees' consent, these interviews were recorded, and transcriptions were created. These transcripts were systematically coded and analysed to identify recurring themes and patterns, as well as differences between the different stakeholders’ inputs. The next point to address was the concept of sustainability. The goal is to introduce this concept and explain its significance in society, particularly with the implementation of initiatives like the United Nations Sustainable Development Goals (SDGs). Therein, these concepts were applied to the topic and scope of this master’s thesis, i.e., on refrigerants management, discussing some advantages, and disadvantages regarding the use of refrigerants and some steps of their management. The thesis shows that the current refrigeration industry is not only dominated by synthetic low-GWP refrigerants, but also natural refrigerants are widely used. Additionally, different opinions and methodologies arose regarding a series of topics. Firstly, when discussing whether they checked for changes in refrigerant composition, it was not possible to obtain a general trend. Secondly, for leak detection systems, different methodologies were used depending on the needs of the organisation, but both manual and fixed systems were mentioned. Finally, regarding end-of-life management, all organizations agreed that the first step should be the recovery of the refrigerant. After that, there are two different options: reclamation (purifying an old refrigerant to obtain one with the characteristics of a virgin refrigerant), and disposal (usually by sending the refrigerants to incineration). F-Gas Regulation and AHRI are the most widely used regulations at present, while organizations expect the PFAS ban to become a real regulation in the future. As a result, most organizations are leaning towards a future dominated by natural refrigerants, which may necessitate new regulations, certain technical changes, and possibly new business models. To conclude, tank-to-grave management of synthetic low-GWP refrigerants offers opportunities for the refrigeration industry, as this concept helps to let you know all the stakeholders involved and the processes they employ, and together with the application of the LCT approach, it is easier to understand how different activities, e.g., recovery and reclamation, can be improved to reduce the environmental impact of these compounds. The study finally considered both natural and synthetic low-GWP refrigerants. Moreover, technical aspects such as analysis composition or leak detection systems, together with end-of-life management approaches and techniques (reclamation or disposal) differed between organizations, so no global trend regarding the Swedish situation could be given. Finally, two possible scenarios arise regarding the legislation: on the one hand, if the PFAS ban proposal is not approved, the industry would continue phasing out high-GWP refrigerants while prioritising reclamation and/or waste energy use from incineration of synthetic low-GWP refrigerants. On the other hand, if the ban is approved, natural refrigerants would become the main and almost only option, requiring adjustments and compliance with new regulations due to their flammability. About the future work to do in this thesis, new interviews with stakeholders that were not interviewed the first time. Moreover, a second round of interviews to address doubts that have appeared. Finally, to study how the rate of reclaimed refrigerants can be increased.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)