Avoiding local minima with Genetic programming of Behavior Trees

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Behavior Trees (BTs) are a reactive policy representation that has gained popularity in recent years, especially in the robotics domain. Among the learning methods for BTs, Genetic Programming (GP) is an effective method for learning a good BT. One drawback of GP is that it is likely to get stuck in local minima. In this project, we focus on studying both the existing methods and new directions to avoid local minima and improve the efficiency of learning BT with GP. The methods studied in the project are the grid search, the Bayesian Optimization (BO), the Distributed Island Model (DIM) and the dynamic selection pressure. We performed the experiments with four different benchmark applications implemented with high-level state machines. The changes related to fitness values, diversity, and origin throughout the learning processes were collected and analyzed as part of the quantitative analysis. Some generated BTs were selected for the qualitative analysis to provide insights into the local minima and individuals with ideal performance. Based on our experiments, we conclude that learning BTs with GP can benefit from a fitness function that is sensitive to the performance differences of the individuals. The effect of methods including the DIM and the dynamic selection pressure depends on both the applications and the settings. We recommend the grid search method for hyperparameter searching and the DIM for accelerating the learning process from distributed computing.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)