Continuous primitives with infinite derivatives

University essay from Linköpings universitet/Analys och didaktik; Linköpings universitet/Tekniska fakulteten

Abstract: In calculus the concept of an infinite derivative – i.e. DF(x) = ±∞ – is seldom studied due to a plethora of complications that arise from this definition. For instance, in this extended sense, algebraic expressions involving derivatives are generally undefined; and two continuous functions possessing identical derivatives at every point of an interval generally differ by a non-constant function. These problems are fundamentally irremediable insofar as calculus is concerned and must therefore be addressed in a more general setting. This is quite difficult since the literature on infinite derivatives is rather sparse and seldom accessible to non-specialists. Therefore we supply a self-contained thesis on continuous functions with infinite derivatives aimed at graduate students with a background in real analysis and measure theory.  Predominately we study continuous primitives which satisfy the Luzin condition (N) by establishing a deep connection with the strong Luzin condition – a weak form of absolute continuity which has its origins in the Henstock–Kurzweil theory of integration. The main result states that a function satisfies the strong Luzin condition if and only if it can be expressed as a sum of two such primitives. Furthermore, we establish some pathological properties of continuous primitives which fail to satisfy the Luzin condition (N). 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)