Knowledge-Based Engineering Application For Fuselage Integration And Cabin Design

University essay from Linköpings universitet/Fluida och mekatroniska system

Abstract: The pace of development in aviation technology is increasing, and there is a constantneed for new concepts to keep up. An innovative concept is desired to reach the netzero emission and sustainability target visualized in Flight path 2050. Introducing digital models and virtualization into aviation fields reduces time consumption onmanual modelling and increases design accuracy. Digital mock-up models also helpin minimizing costs due to errors in the later stage of development or manufacturing. The Institute of Systems Architecture in Aeronautics at German AerospaceCenter (DLR) works in digitizing cabin design environments with extensive implementation of the Knowledge-Based Engineering (KBE) approach. The virtual cabindesign system tool also known as Fuselage Geometry Assembler (FUGA) providesa digital model of the cabin of both single and twin aisle configurations of commercial aircraft. The information of aircraft characteristics is provided to FUGA using Common Parametric Aircraft Configuration Schema (CPACS). CPACS coupled with FUGA provides the user with a consistent model of aircraft and cabindesign, when viewed through a virtual platform provides an immersive experienceto be inside an aircraft cabin before physical production. The multidisciplinary capability of FUGA provides experts from different disciplines to perform analysis such as vibration analysis on the cabin environment. For ease of usage and better visualization of information from FUGA, a web-based application through Flask is hosted for FUGA. This enables the user to access the FUGA tool without the needof installing the tool on their devices. With the world now moving towards a greener approach, an alternative propulsion system may require a different fuel tank configuration. Retro-fit of liquid hydrogen fuel tank into an existing aircraft’s fuselage is done using FUGA tool and aircraft performance analysis is conducted and the outcomes are studied. The enhanced and advanced model of twin-aisle configuration, now on par with single-aisle configuration is used for hydrogen tank sensitivity analysis. The comparative study of different aisle configurations retro-fitted with liquidhydrogen fuel tank is further conducted for arriving at an optimal design point fora balance in range and passenger capacity.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)