Improving the Robustness of Deep Neural Networks against Adversarial Examples via Adversarial Training with Maximal Coding Rate Reduction

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Deep learning is one of the hottest scientific topics at the moment. Deep convolutional networks can solve various complex tasks in the field of image processing. However, adversarial attacks have been shown to have the ability of fooling deep learning models. An adversarial attack is accomplished by applying specially designed perturbations on the input image of a deep learning model. The noises are almost visually indistinguishable to human eyes, but can fool classifiers into making wrong predictions. In this thesis, adversarial attacks and methods to improve deep learning ’models robustness against adversarial samples were studied. Five different adversarial attack algorithm were implemented. These attack algorithms included white-box attacks and black-box attacks, targeted attacks and non-targeted attacks, and image-specific attacks and universal attacks. The adversarial attacks generated adversarial examples that resulted in significant drop in classification accuracy. Adversarial training is one commonly used strategy to improve the robustness of deep learning models against adversarial examples. It is shown that adversarial training can provide an additional regularization benefit beyond that provided by using dropout. Adversarial training is performed by incorporating adversarial examples into the training process. Traditionally, during this process, cross-entropy loss is used as the loss function. In order to improve the robustness of deep learning models against adversarial examples, in this thesis we propose two new methods of adversarial training by applying the principle of Maximal Coding Rate Reduction. The Maximal Coding Rate Reduction loss function maximizes the coding rate difference between the whole data set and the sum of each individual class. We evaluated the performance of different adversarial training methods by comparing the clean accuracy, adversarial accuracy and local Lipschitzness. It was shown that adversarial training with Maximal Coding Rate Reduction loss function would yield a more robust network than the traditional adversarial training method.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)