Evaluation of key performance indices for frequency quality : A method for evaluating frequency stability in the Nordic power system

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The Nordic power system is in a changing phase, with more power electronic interfaced connections, and HVDC connections to other synchronous areas, which impacts the frequency quality. This is a challenge for the transmission system operator of Sweden, Svenska Kraftnät, who, with the other Nordic transmission system operators, is responsible for the physical balancing of the Nordic power system. To ensure that the grid can maintain stable operation when power imbalances or a disturbance occur, the frequency quality is important to evaluate. According to the current measurement of frequency quality, minutes outside of the standard frequency band, the frequency quality in the Nordic power system has been deteriorating. The current measurement does not capture what impact the frequency quality and needs to be redefined, with more precise measurements, for Svenska Kraftnät to be able to take necessary actions to ensure stability of the power system. Therefore, the purpose of this project is to determine which key performance indices, KPIs, can be used to develop the definition of frequency quality, and which system parameters are captured by the different KPIs. This project is executed with simulations in Matlab/Simulink to determine the impact five system parameters have on 15 different KPIs, and the results from the simulations are validated with historical data. The results indicate that all system parameters can be captured with KPIs, but after validation with historical data only two system parameters, which correlated with four KPIs, were deemed to be valid. The amount of FCR-N energy activated can be captured with the standard deviation of frequency, frequency area, and number of FCR-D activations. The kinetic energy can be captured by the standard deviation of RoCoF. The KPIs are recommended to be used to identify, and measure, the impact of new technical requirements for frequency control, and how the frequency stability is impacted by changes in the system. The conclusion is that four key performance indices are recommended to improve the definition of frequency quality, and further research is recommended to further define the concept of frequency quality.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)