Controls over stream temperature in a northern boreal landscape

University essay from Umeå universitet/Institutionen för ekologi, miljö och geovetenskap

Abstract: With widespread increases in air temperature, it is expected that the temperature of aquatic ecosystems will also increase, especially at high latitudes. Warmer streams and rivers could have severe, direct impacts on cold-adapted aquatic fauna but may also indirectly influence species by reducing the amount of suitable habitat. Yet, increases in air temperature alone ara potentially insufficient to cause stream warming, which is also influenced by a range of other factors that govern the energy balance of individual stream reaches. Here, I used long-term water temperature data from seven streams in the Krycklan Catchment Study (KCS) to ask whether there are recent trends in warming, and to evaluate how catchment properties regulate the sensitivity of streams to air temperature change during summer. Mann Kendall trend analysis at one headwater site showed that there has indeed been a warming trend in the KCS, but only during a brief time-window in early summer. Across, KCS sites, air temperature-water temperature regressions highlighted notable variation in the thermal sensitivity of streams depending on their catchment features. Finally, observations during extreme warm and dry years did not indicate strong responses in terms of stream temperature. In fact, extreme low-flow conditions seem to reduce the downstream propagation of warm lake water during these events. Collectively, my results suggest that ongoing climate changes in the boreal region have not had dramatic influences on stream temperature, although future changes occurring around the snowmelt season are likely.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)