Evaluation of FMCW Radar Jamming Sensitivity

University essay from Uppsala universitet/Signaler och system

Abstract: In this work, the interference sensitivity of an FMCW radar has been evaluated by studying the impact on a simulated detection chain. A commercially available FMCW radar was first characterized and its properties then laid the foundation for a simulation model implemented in Matlab. Different interference methods have been studied and a selection was made based on the results of previous research. One method aims to inject a sufficiently large amount of energy in the form of pulsed noise into the receiver. The second method aims to deceive the radar into seeing targets that do not actually exist by repeating the transmitted signal and thus giving the radar a false picture of its surroundings. The results show that if it is possible to synchronize with the transmitted signal then repeater jamming can be effective in misleading the radar. In one scenario the false target even succeeded in hiding the real target by exploiting the Cell-Averaging CFAR detection algorithm. The results suggests that without some smart countermeasures the radar has no way of distinguishing a coherent repeater signal, but just how successful the repeater is in creating a deceptive environment is highly dependent on the detection algorithm used. Pulsed noise also managed to disrupt the radar and with a sufficiently high pulse repetition frequency the detector could not find any targets despite a simulated object in front of the radar. On the other hand, a rather significant effective radiated power level was required for the pulse train to achieve any meaningful effect on the radar, which may be due to an undersampled signal in the simulation. It is therefore difficult based on this work to draw any conclusions about how suitable pulsed noise is in a non-simulated interference context and what parameter values to use.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)