Wheel Wear Simulation of the Light Rail Vehicle A32

University essay from KTH/Spårfordon

Abstract: During the last decade, a novel methodology for wheel wear simulation has been developed in Sweden. The practical objective of this simulation procedure is to provide an integratedengineering tool to support rail vehicle design with respect to wheel wear performance and detailed understanding of wheel-rail interaction. The tool is integrated in a vehicle dynamicssimulation environment.The wear calculation is based on a set of dynamic simulations, representing the vehicle, the network, and the operating conditions. The wheel profile evolution is simulated in an iterativeprocess by adding the contribution from each simulation case and updating the profile geometry.The method is being validated against measurements by selected pilot applications. To strengthen the confidence in simulation results the scope of application should be as wide aspossible in terms of vehicle classes. The purpose of this thesis work has been to try to extend the scope of validation of this method into the light rail area, simulating the light rail vehicleA32 operating in Stockholm commuter service on the line Tvärbanan.An exhaustive study of the wear theory and previous work on wear prediction has been necessary to understand the wear prediction method proposed by KTH. The dynamicbehaviour of rail vehicles has also been deeply studied in order to understand the factors affecting wear in the wheel-rail contact.The vehicle model has been validated against previous studies of this vehicle. Furthermore new elements have been included in the model in order to better simulate the real conditionsof the vehicle.Numerous tests have been carried out in order to calibrate the wear tool and find the settings which better match the real conditions of the vehicle.Wheel and rail wear as well as profile evolution measurements were available before this work and they are compared with those results obtained from the simulations carried out.The simulated wear at the tread and flange parts of the wheel match quite well the measurements. However, the results are not so good for the middle part, since themeasurements show quite evenly distributed wear along the profile while the results from simulations show higher difference between extremes and middle part. More tests would benecessary to obtain an optimal solution.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)