Linear Impact of Bicycle Helmet – Experimental Testing and FE-modelling

University essay from KTH/Hållfasthetslära

Abstract: The aim with this master thesis was to set up a FE-simulation of an impact test of a bike helmet in LS-DYNA that correlates well with the peak acceleration score of a real life impact test. Furthermore, a parametric study has been performed in LS DYNA to investigate the robustness of the model, as well as to see which parameters have a great influence on the peak acceleration score. To investigate the acceleration of the helmet, helmet drop tests have been performed at the Borås RISE lab. Building an FE-model of the helmet drop test required multiple iterations to ensure stability and accuracy of the model. The steps of the modelling process included investigating previous simulations of helmet impacts in LS-DYNA, preprocessing of CAD, defining material models and establishing contact and boundary conditions. The parameters that have proven to have a great impact on the peak acceleration value are the tensile stress cutoff, the PC shell thickness, the strain rate dependency, and the EPS thickness. A conclusion of this work is that FE modelling is a way to approximate the peak acceleration value for linear impact tests, and a useful tool for investigating design parameters. The density of the EPS foam is shown to have a large influence on the peak acceleration value in both the experimental tests and the FE simulation. From the FE simulationns, the thickness of the EPS, as well as the thickness of the PC shell have shown to have a great impact on the peak acceleration score.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)