Electrochemical Behavior of the High Entropy Oxide (Mg,Co,Ni,Zn)1-xLixO (x=0,35)

University essay from KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Abstract: Today's society is currently developing lithium-ion batteries to eventually replace the use of fossil fuels. High entropy oxides is a new type of material to use as an anode in the lithium-ion battery. These high entropy oxides may consist of a few different transition metals including lithium and oxygen. In this report was (MgCoNiZn)1-xLixO synthesized with a method called Pechini with a molar fraction of x=0.35. This study compares the results from a reference study that has shown the potential of the electrochemical characteristics of (MgCoNiZn)1-xLixO for application as anode in a lithium-ion battery.  The synthesis starts with a heating step to remove all the organics in the composition. The powder consists of several structures and, therefore goes through a calcination step to dissolve all of the intermediate phases into the rock-salt structure. The structure of the powder had a lattice constant of 4,138Å. The powder was made into a slurry containing Carbon black, PVDF and NMP to later get coated by a Dr. Blade. After drying the coating the cell was then assembled with lithium as metal cathode and 1M LiPF6 in 1:1 EC/DMC as electrolyte. After the cell was assembled it, went through electrochemical properties test using a potentiostat and the cell being inside a in a climate chamber at 25°C.  7 cycles were done to plot a cyclic voltammetry graph as well as a discharge-charge test was performed. The cyclic voltammetry and discharge-charge test was run with a voltage range of 0,053 V. The discharge-charge test was run at a current density of 100 mA/g and a constant current of 42,68 mA. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)