Cracking in a slender concrete slab due to thermal variation

University essay from KTH/Betongbyggnad

Abstract: Concrete slabs used in thepulp and paper industries are often situated outdoors, which means that theslabs are exposed to temperature variations due to different weatherconditions. These temperature variations together with operational temperaturesassociated with the manufacturing process, may introduce high temperaturegradients in the concrete. It is believed that the combination of these thermalloads have resulted in cracking in a slender concrete slab.The aim of this degree project has been to determine if the combination ofseasonal temperature and operational temperature is sufficient to introduce thetype of cracking seen in-situ in the concrete slab of a factory in Sundsvall,400 km north of Stockholm. This was achieved by simulating the development ofcracks in a slender concrete slab exposed to thermal loads using finite elementanalysis (FEA). In order to determine the accuracy of the model, the resultswere compared and evaluated against a crack mapping produced by Sweco. Furthersimulations were also carried out, in order to investigate if continuedcracking would occur beyond the time span of the Sweco investigation.The material model Concrete damage plasticity (CDP) in BRIGADE/Plus and Abaquswas used to predict the crack pattern and crack width in the concrete slab.Linear-elastic and non-linear material properties were used in the modelling ofthe concrete slab. The linear-elastic model indicated that thermal variationshowed significant risk of cracking. Thereafter, non-linear material propertieswere used in the modelling process. The cracking was simulated using ambienttemperature data and operational temperatures from the production plant.The results showed that cracking started when thermal loads were introduced tothe model. The ambient seasonal temperature alone was not enough to introducethe type of cracking seen in-situ on the slab. The combination of seasonalambient temperature and operational temperature was needed, in order for cracksto develop in the concrete slab. The results also indicated that the crackswill propagate further, but this can only be confirmed by performing additionalcrack mapping on site.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)