Preprocessing method comparison and model tuning for natural language data

University essay from Högskolan Dalarna/Mikrodataanalys

Abstract: Twitter and other microblogging services are a valuable source for almost real-time marketing, public opinion and brand-related consumer information mining. As such, collection and analysis of user-generated natural language content is in the focus of research regarding automated sentiment analysis. The most successful approach in the field is supervised machine learning, where the three key problems are data cleaning and transformation, feature generation and model choice and training parameter selection. Papers in recent years thoroughly examined the field and there is a agreement that relatively simple techniques as bag-of-words transformation of text and a naive bayes models can generate acceptable results (between 75% and 85% percent F1-scores for an average dataset) and fine tuning can be really difficult and yields relatively small results. However, a few percent in performance even on a middle-size dataset can mean thousands of better classified documents, which can mean thousands of missed sales or angry customers in any business domain. Thus this work presents and demonstrates a framework for better tailored, fine-tuned models for analysing twitter data. The experiments show that Naive Bayes classifiers with domain specific stopword selection work the best (up to 88% F1-score), however the performance dramatically decreases if the data is unbalanced or the classes are not binary. Filtering stopwords is crucial to increase prediction performance; and the experiment shows that a stopword set should be domain-specific. The conclusion is that there is no one best way for model training and stopword selection in sentiment analysis. Thus the work suggests that there is space for using a comparison framework to fine-tune prediction models to a given problem: such a comparison framework should compare different training settings on the same dataset, so the best trained models can be found for a given real-life problem.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)