Anomaly detection for prediction of failures in manufacturing environments : Machine learning based semi-supervised anomaly detection for multivariate time series to predict failures in a CNC-machine

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: For manufacturing enterprises, the potential of collecting large amounts of data from production processes has enabled the usage of machine learning for prediction-based monitoring and maintenance of machines. Yet common maintenance strategies still include reactive handling of machine failures or schedule-based maintenance conducted by experienced personnel. Both of which are time-consuming and costly for manufacturing enterprises. The incorporation of anomaly detection for production processes alleviates several problems connected to these resource-intensive maintenance strategies. Anomaly detection enables real-time maintenance alarms derived from the occurrence of anomalies and thereby a foundation for proactive maintenance during manufacturing. However, to realize this, one needs to investigate the correlation between machine failure and anomalies in the data. For the machine learning models, it is also of essence to handle the imbalance between failure and normal working condition data. In this work, we investigate the potential of anomaly detection to predict future tool failures of an active CNC-machine based on multivariate time series data collected through the standardized data collection protocol MTConnect. Two semi-supervised anomaly detection methods, DeepAnT and ROCKET OCSVM, were tested. Training and evaluation of the two models were conducted on three production part processes and the difference in anomaly distribution previous to failure and in the normal machine working condition was investigated. The results showed that both models, for all the investigated tool failures belonging to the three production part processes, found an abundance of anomalies preceding failure when compared to the normal working condition of the machines. For certain tool failures, the anomalies were found as far back as seven production cycles before failure, while other anomalies were mainly uncovered close to the failure. Furthermore, it was shown that both models performed optimally with 100 production cycles before tool failures excluded from training, indicating that more anomalies further back connected to failure or possible long-term degradation of machine tools could exist. Lastly, ROCKET OCSVM with RBF kernel showed greater reliability compared to the DeepAnT method in separating the normal working condition data of the CNC machine against the pre-failure data based on anomaly distribution. In conclusion, anomaly detection shows promising results in indicating future machine failure and could serve as a foundation for proactive maintenance strategies of machines. By incorporating proactive strategies, machine downtime, operator maintenance time, and resources and expenses resulting from machine failure could be reduced.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)