Mosaicing of Fetoscopic Acquired Images using SIFT and FAST

University essay from KTH/Skolan för datavetenskap och kommunikation (CSC)

Abstract: This is a study exploring how robust one feature descriptors, scale invariant feature transform (SIFT), and one feature detector, feature accelerated segmentation test (FAST), are in terms of handling fetoscopic acquired data when mosaicing. Today’s treatment of severe Twin-to-Twin Transfusion Syndrome at Karolinska University Hospital is fetoscopic guided laser occlusion of chorioangiopagous vessels (FLOC) where intersecting blood vessels causing a transfusion (Anastomoses) in between the fetuses are occluded. These blood vessels are located somewhere on the placenta. The fetoscopy includes navigation of a relatively large area where the field of view (FOV) is limited. The limited FOV during the fetoscopy makes it cumbersome to navigate and identify intersected blood vessels. The motivation of this study is to explore ways of dealing with the complications during FLOC by mosaicing an overview of the placenta that can be used as an assisting map to make the procedure safer by improving navigation of the fetoscope and identification of blood vessels during FLOC. In this study, the steps of mosaicing are defined based on mosaicing frameworks to explore how these methods perform in terms of being able to mosaic a map of the placenta. The methods have been tested on non-fetoscopic acquired data as well as fetoscopic acquired data to create a relative measure in between the two. Three tests on non- fetoscopic data were performed to explore how well the methods handled mosaicing of data with distinctive characteristics. The same methods were then tested on unprocessed fetoscopic data before being tested on preprocessed fetoscopic data to see if the results were affected by external preprocessing. The results showed that there were differences in between the methods. SIFT and FAST showed that they have potential of mosaicing non-fetoscopic data of varying extent. SIFT gave an impression of being more robust during all of the tests. SIFT especially performed better during the tests on data with few potential keypoints which is an advantage when speaking of fetoscopic acquired data. SIFT also managed to mosaic a larger area than FAST when mosaicing preprocessed fetoscopic data. Preprocessing the data improved the mosaicing when using SIFT but further improvements are needed.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)