Algorithms for efficient VM placement in data centers : Cloud Based Design and Performance Analysis

University essay from Blekinge Tekniska Högskola/Institutionen för datalogi och datorsystemteknik

Abstract: Content: Recent trends show that cloud computing adoption is continuously increasing in every organization. So, demand for the cloud datacenters tremendously increases over a period, resulting in significantly increased resource utilization of the datacenters. In this thesis work, research was carried out on optimizing the energy consumption by using packing of the virtual machines in the datacenter. The CloudSim simulator was used for evaluating bin-packing algorithms and for practical implementation OpenStack cloud computing environment was chosen as the platform for this research.   Objectives:  In this research, our objectives are as follows

    Perform simulation of algorithms in CloudSim simulator. Estimate and compare the energy consumption of different packing algorithms. Design an OpenStack testbed to implement the Bin packing algorithm.   Methods: We use CloudSim simulator to estimate the energy consumption of the First fit, the First fit decreasing, Best fit and Enhanced best-fit algorithms. Design a heuristic model for implementation in the OpenStack environment for optimizing the energy consumption for the physical machines. Server consolidation and live migration are used for the algorithms design in the OpenStack implementation. Our research also extended to the Nova scheduler functionality in an OpenStack environment.   Results: Most of the case the enhanced best-fit algorithm gives the better results. The results are obtained from the default OpenStack VM placement algorithm as well as from the heuristic algorithm developed in this simulation work. The comparison of results indicates that the total energy consumption of the data center is reduced without affecting potential service level agreements.   Conclusions: The research tells that energy consumption of the physical machines can be optimized without compromising the offered service quality. A Python wrapper was developed to implement this model in the OpenStack environment and minimize the energy consumption of the Physical machine by shutdown the unused physical machines. The results indicate that CPU Utilization does not vary much when live migration of the virtual machine is performed.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)