Analysis for frequencies for future 5G system by positioning receiver at different altitudes.

University essay from Högskolan i Gävle/Avdelningen för elektroteknik, matematik och naturvetenskap

Author: Tanbir Bakth Nabil; [2020]

Keywords: ;

Abstract: One of the main advantages of 5G is the use of high frequency signals and above 6GHz frequency range is one of the most researched topics in the wireless communication industry. Large unused spectrum is expected to be used in the next generation 5G communication. Also, there is a great possibility of using that high frequency band for the drone in an industrial environment. But with the high frequency comes higher path loss, so it is important to study the path loss model at different environment of unused frequencies. Contemporary research on 5G frequencies mainly focuses on the 28 GHz band, the 38 GHz band, the 60 GHz band, and the E-band (71–76 and 81–86 GHz). But This thesis focuses on designing a test system for 7,05 GHz frequency band and then the measurements were conducted. Which was conducted at different height of the receiver while the transmitter height was constant. Also, the distance between Transmitter and receiver was varied in the entire experimental procedure. The measurements were performed at Research Laboratory at University of Gävle. Omni directional antennas were used, and co-polarization and cross-polarization antenna configuration were used to measure the received power. The measurement provided a statistical overview and nature of received power at 7,05 GHz at different heights of receiver. Additionally, different materials were placed between Transmitter and Receiver, to see the Effects of these on the received power in different conditions before and after placing the materials in between transmitter and receiver.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)