Financial Modelling Using Fractional Processes And The Wiener Chaos Expansion

University essay from KTH/Matematik (Avd.)

Abstract: The aim of this thesis is to simulate stochastic models that are driven by a fractional Brownian motion process and to apply these methods to financial applications related to yield rate and asset price modelling. Several rough volatility processes are used to model the asset price and yield dynamics. Firstly fractional processes of Cox-Ingersoll-Ross, CEV and Vasicek types are introduced as models for volatility and yield data. In this framework it holds that the Hurst parameter that determines the covariance structure of the fBM process can be directly estimated from observed data series using a least squares log-periodogram approach. The remaining parameters in the model are estimated using a combination of Maximum Likelihood estimates and expectation estimations. In the modelling and pricing of assets one model that is studied is the fractional Heston model, that is used to model an asset price process using both observed asset and volatility data. Similarly two other similar rough volatility models are also studied, which are constructed so as to have log-Normal returns. These processes which in the thesis are called the exponential models 1 and 2 have rough volatility that are characterized by the CEV and Vasicek processes. Additionally the first order Wiener Chaos Expansion is implemented and explored in two ways. Firstly the Chaos Expansion is applied to a parametric fractional stochastic model which is used to generate a Wick product process, which is found to resemble the underlying process. It is also used to generate an approximate expansion of real yield rate data using a bootstrap sampling approach.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)