Benchmark of Probabilistic Methods for Fault Diagnosis

University essay from KTH/Reglerteknik

Author: Mary Lam; [2007]

Keywords: ;

Abstract: To be able to do the correct action when a fault is detected, the fault isolation part must be precise and run in real time during operation of the process. In many cases can it be difficult to decide exactly where the fault is localized. In those cases, the isolation algorithm must rank the faults according to their probability to be the cause to the behavior. The masters thesis project aims at probabilistic methods and algorithms for fault isolation in embedded systems. Different kind of Bayesian Networks have been compared in this report and the comparison has been done on a literature defined “benchmark system”. Those Bayesian network models which have been implemented for fault isolation are: 1. Manually (on the basis of physical representations) 2. Two-layer structure continuous signals discreet signals 3. Via temporal causal graph (dynamical network) The algorithms should be compared in the following areas: computational complexity, isolation performance and degree of difficulty to construct the network on the basis of data. The evaluated algorithms showed good results. Even though the system data which have been used in the Bayesian Networks are not very accurate in the first place, it manage to give a fairly precise isolation of the faults. The continuous Bayesian Network manage to show a good isolation performance for different type of faults and the Dynamic Bayesian Network found most of the faults even for a rather complex network.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)