Enabling a Viable Circular Ecosystem for Electric Vehicle Batteries : The Case of Heavy-Duty Commercial Electric Vehicles

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: Electrification of the automotive sector is emerging, due to the decarbonization of the transport sector, where the lithium-ion battery production is estimated to raise from 70 GWh in 2017 to above 3,600 GWh in 2030 due to the transition to Battery Electric Vehicles (BEV). Challenges arise for Original Equipment Manufacturers (OEM) of BEVs, with a need for circularity to extend the life of batteries, upcoming EU battery regulation, digitalization, and uncertainties in value chains due to current external situations, scarcity of material, and supply chain disruptions. Current literature expresses gaps related to information sharing, roles and dominance, and ecosystem development for actors seeking circularity. Therefore, this study holistically observes the case of heavy-duty commercial electric vehicles and aims to explore how sharing information could enable circular ecosystems through exploring characteristics, capabilities, preferences, challenges, and opportunities related to the ecosystem, and data and information.  The process towards reaching the research aim and enabling a viable circular ecosystem for electric vehicle batteries was initiated by conducting a literature review followed by interviews with identified ecosystem actors and experts. 28 interviews were conducted based on the developed conceptual guiding model, to extensively explore the ecosystem and include all stakeholders. Empirical findings combined with literature entail multiple various preferences, challenges, and opportunities for actors, related to how the ecosystem develops and how sharing information enables ecosystems. The main challenges are associated with battery development, ecosystems and actors, information and data, and circular business, where misalignment and lack of common goals and value propositions hinder circular ecosystems. The study reveals previous misunderstandings of how electric vehicle battery ecosystems will develop, where OEM prefers a restricted or narrow circularity with selected partners, which creates less complexity and a need for digital technologies. Information sharing acts as an enabler, however, to realize viable circular ecosystems holistic perspective, common value proposition, and circularity strategy must be aligned.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)