Scann Loss Reduction on Phased Array Antenna

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Phased array antennas with small size and light weight are proposed to make signal transmitting more efficiently and accurately. These antennas have such advantages that they can realize beam scanning over a large range, accurately track and identify targets within the observation range. In beam scanning, the scan loss which is the difference between the scanned gain and broadside gain has a great impact on the performance of phased array antennas. This thesis aims to study how to reduce the scan loss while the beam is scanned over a wide range. One of the methods to reduce the scan loss is to widen the beam-width of the embedded radiation pattern. With the wide beam-width, the gain reduction due to beam scanning would be small. We propose a method to replace a conventional half-wavelength unit-cell in an array with a sub-array composed of 5 miniaturized elements with special phase/amplitude distribution. The size of the sub-array is finely tuned in this thesis to achieve the goal of wide beam-width without any grating lobe. Then, in order to further expand the beam-width, the ideal power divider is utilized to apply specific weight to the sub-array. The simulation result shows that the maximum scan loss for the considered case is 3.67dB over ±80° scan range with an voltage amplitude distribution of [0.234, 0.64, 0.26, 0.64, 0.234] (1) and a phase of 88° between the 5 sub-array elements, which can be realized by the ideal power divider. If the allowed gain reduction is relaxed to 5dB, the scan coverage can be extended to ±89°.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)