Autonomous Quadcopter Landing with Visual Platform Localization

University essay from Luleå tekniska universitet/Institutionen för system- och rymdteknik

Abstract: Multicopters such as quadcopters are a popular tool within industries such as mining, shipping and surveillance where a high level of autonomy can save time, increase efficiency and most importantly provide safety. While Unmanned Aerial Vehicles have been a big area in research and used in the mentioned industries, the level of autonomy is still low. Simple actions such as loading and offloading payload or swapping batteries is still a manual task performed by humans. If multicopters are to be used as an autonomous tool the need for solutions where the machines can perform the simplest task such as swapping batteries become an important stepping stone to reach the autonomy goals. Earlier works propose landing solutions focused on landing autonomous vehicles but the lack of accuracy is hindering the vehicles to safely dock with a landing platform. This thesis combines multiple areas such as trajectory generation, visual marker tracking and UAV control where results are shown in both simulation and laboratory experiments. With the use of a Model Predictive Controller for both trajectory generation and UAV control, a multicopter can safely land on a small enough platform which can be mounted on a small mobile robot. Additionally an algorithm to tune the trajectory generator is presented which shows how much weights can be increased in the MPC controller for the system to remain stable. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)