Confidential Federated Learning with Homomorphic Encryption

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Federated Learning (FL), one variant of Machine Learning (ML) technology, has emerged as a prevalent method for multiple parties to collaboratively train ML models in a distributed manner with the help of a central server normally supplied by a Cloud Service Provider (CSP). Nevertheless, many existing vulnerabilities pose a threat to the advantages of FL and cause potential risks to data security and privacy, such as data leakage, misuse of the central server, or the threat of eavesdroppers illicitly seeking sensitive information. Promisingly advanced cryptography technologies such as Homomorphic Encryption (HE) and Confidential Computing (CC) can be utilized to enhance the security and privacy of FL. However, the development of a framework that seamlessly combines these technologies together to provide confidential FL while retaining efficiency remains an ongoing challenge. In this degree project, we develop a lightweight and user-friendly FL framework called Heflp, which integrates HE and CC to ensure data confidentiality and integrity throughout the entire FL lifecycle. Heflp supports four HE schemes to fit diverse user requirements, comprising three pre-existing schemes and one optimized scheme that we design, named Flashev2, which achieves the highest time and spatial efficiency across most scenarios. The time and memory overheads of all four HE schemes are also evaluated and a comparison between the pros and cons of each other is summarized. To validate the effectiveness, Heflp is tested on the MNIST dataset and the Threat Intelligence dataset provided by CanaryBit, and the results demonstrate that it successfully preserves data privacy without compromising model accuracy.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)