Evaluation and comparison of ballastless track systems with regards to system and performance characteristics

University essay from KTH/Spårfordon

Author: Willand Björkquist; Ismayil Janjua; [2020]

Keywords: ;

Abstract: As axle loads and speeds constantly increase in rail transport, new track systems are being developed. One such development is the ballastless track system. Today there are several types and variations of slab tracks, but how do they differ, and which one is the best? This thesis aims to answer these questions for given scenarios as each system has its unique set of strengths and therefore performs differently compared to the other systems for different projects. In this thesis, several existing ballastless track solutions have been studied. This was done viaballastless system manufacturer websites, brochures, other notable literature as well as multiple meetings with each of the system manufacturers. As a result, a descriptive list of nine different systems has been developed as well as a more detailed comparison in the shape of a table. To find out which one should be used and when, a model was developed for comparison of them. This model is based on a Multiple-criteria decision analysis (MCDA). This is a tool that can be used to compare different alternatives, based on several, often conflicting criteria. In the end, the VIKOR method was chosen. The choice was based on VIKOR’s user-friendliness, as well as implementation of auxiliary features, such as regret-value and compromise solutions. The MCDA based model was built in Excel and MATLAB and is expandable to the needs of the user. To test the model and whether it contains any bias, a sensitivity study was carried out. Ten hypothetical scenarios were set up and corresponding importance weights were assigned accordingly. The results were mixed and sparse for the different hypothetical scenarios and showed that no, or little, inherent biases were present in the model. Thus, the model proved to be successful in the end, and can therefore be a good addition to the selection process of a ballastless system alongside other studies, such as Life-cycle cost analysis (LCCA). There is however still some more development that could be done to improve the model. Finally, to demonstrate how the model is implemented for a rail project, a case study was carried out. The case study was conducted for a single hypothetical tunnel close to a city, assumed to be in Sweden. The background conditions were described, and the weighting process was illustrated and inserted to the model. For this particular case the ÖBB-Porr system from the Porr group proved to be the most suitable choice.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)