Experimental Investigation of Hydrodynamic Effects on a Vibrating Kaplan Runner

University essay from Luleå tekniska universitet/Strömningslära och experimentell mekanik

Abstract: An experimental investigation of a vibrating Kaplan turbine runner was performed in order to understand the hydrodynamic effects and to obtain or confirm the mass and damping coefficients used for dimensioning at the design stage. Improved design can lead to increased efficiency and lifetime of hydropower stations. The method was based on the 90◦ phase shift between acceleration and velocity and their relationship with mass and damping respectively. The experiment examined frequencies between 1–9 Hz at displacements between 0.25–2.00 mm. Results showed a frequency dependent added mass which varied between 1.2 and 1.5 (neglecting the highest and lowest frequencies) and an added damping between 0.8 and 1.2 which became of importance at low frequencies. A mathematical interpretation of the fluid solid interactions (based on the constitutive equation for stresses in a Newtonian fluid) has been derived and connected to the obtained experimental data.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)