Tire-soil interaction analysis of forest machines

University essay from KTH/Maskinkonstruktion (Inst.)

Abstract: Cut-to-length logging is a mechanized method for delimbing trees and cutting them to length. It is a two-machine operation; taken care by a harvester and a forwarder. The forwarder can cause soil rutting, soil compaction and other detrimental after effects. Therefore it has become vital to protect the forest floor from destructive effects of heavy machines. This initiated the study to delve more into the interaction between the loaded forwarder wheel and the soil. Various WES based rut depth models has been compared to validate its effectiveness in predicting the rut depths. New models have been developed to estimate the rut depth produced by the multipass effect of wheels. Models that could predict the contact pressure between the tire and soil as well as the tire soil contact area has been studied. Various relations to determine the mobility parameters have also been studied. The ones that are suitable to predict mobility parameters have been identified. Roots play a major role in reinforcing the soil and protecting them. This extra reinforcement provided by roots has been taken into account in the thesis work. Lab test with pine tree roots have been carried out to determine the extra reinforcement supplied. Models that are capable of predicting the reinforcement effects due to roots have also been looked into. An initial step towards connecting WES and Bekker models have been done; available models correlating both WES and Bekker models have been analysed and finally a set of relations connecting both have been derived. The effect of slip on sinkage has been studied with the help of both WES and Bekker based models. Multibody simulation software MSC Adams has been used to simulate the forwarder model to determine its suitability for rut depth prediction. Adams has been employed to study the effect of tire inflation pressure and velocity on rut depth.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)