Joint Estimation and Calibration for Motion Sensor

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: In the thesis, a calibration method for positions of each accelerometer in an Inertial Sensor Array (IMU) sensor array is designed and implemented. In order to model the motion of the sensor array in the real world, we build up a state space model. Based on the model we use, the problem is to estimate the parameters within the state space model. In this thesis, this problem is solved using Maximum Likelihood (ML) framework and two methods are implemented and analyzed. One is based on Expectation Maximization (EM) and the other is to optimize the cost function directly using Gradient Descent (GD). In the EM algorithm, an ill-conditioned problem exists in the M step, which degrades the performance of the algorithm especially when the initial error is small, and the final Mean Square Error (MSE) curve will diverge in this case. The EM algorithm with enough data samples works well when the initial error is large. In the Gradient Descent method, a reformulation of the problem avoids the ill-conditioned problem. After the parameter estimation part, we analyze the MSE curve of these parameters through the Monte Carlo Simulation. The final MSE curves show that the Gradient Descent based method is more robust in handling the numerical issues of the parameter estimation. The Gradient Descent method is also robust to noise level based on the simulation result.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)