Linear Position Tracking for Controlling a Robotic Arm Using Inertial Sensors : Development of a Robotic Arm and an Inertial Sensor-Based Tracking System

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: In the field of mechatronics, different types of robotic arms are used for various applications. Control of robotic arms from a distance is required in certain situations, such as hazardous environments. The purpose of this thesis was to investigate the feasibility, speed, and accuracy of the movement of a robotic arm following the movement of one handheld Inertial Measuring Unit (IMU). The assessment of accuracy was determined through experiments with pre-established movements and examined responses from the arm. The robot arm has four degrees of freedom and is controlled by integrating and filtering the IMU data to obtain the linear position, and inverse kinematics are used to obtain the arm joint angles required to reach the position. The robotic arm was constructed using Solid Edge 3D CAD, 3D printed in PLA plastic. After construction electronic components were connected and assembled. The programs were implemented in MATLAB, and the data was processed and transferred through the Arduino Integrated Development Environment (IDE). The results indicate that the robotic arm demonstrates good capability in executing given coordinates. The accuracy of the IMU-based position tracking is inconsistent and not suitable for all applications. The system's total speed for reading and executing movements is found to be satisfactory, but improvements in precision are necessary for more demanding implementations. The primary causes of errors in the system are attributed to the precision of the measuring device, manufacturing deviations, and limitations in the IMU calculation. This study contributes to the understanding of linear position tracking using inertial sensors, filtering techniques, and communication between microcontrollers, providing insights for future research and development in the field.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)