Computational Design in the AEC industry : Applications and Limitations

University essay from Luleå tekniska universitet/Institutionen för samhällsbyggnad och naturresurser

Abstract: The AEC-industry need to respond to multiple requirements from regulations and clients, leading to that building projects are becoming increasingly complex to handle for designers. CAD or computer aided design is a way to handle these challenges, and within CAD a new method is emerging: Computational design enables users to generate and explore design solutions automatically. The purpose of this study was to investigate how computational design can be used and what limitations architects and engineers experience with it.   A qualitative research approach was chosen to get in depth understanding. To get variation 16 semi-structured interviews were conducted as primary data collection coupled with a literature review as theoretical framework. The thesis found that computational design applies both design thinking and computational thinking, it is an iterative process that generates design by altering parameters or algorithms and affects the intended design. In this thesis it also needs to be part of the AEC design process. Computational design was found to have most potential in early stage but can be useful for engineers in later stage as well.  Computational design can be used to increase workflow efficiency through automation and rapid feedback which can improve communication and collaboration. It can also increase solution performance by generating design based on multiple objectives. Furthermore, it enables users to expand their solution space and solve complex problems too difficult to solve otherwise. Computational design can be used to analyze early building concepts, analyze floorplans, to optimize material consumption, material choices, structural elements, energy efficiency, daylight, and acoustic requirements. Challenges found were on an individual level a steep learning curve, increased complexity, collection of trustworthy data and interpretation of data. Challenges on an organizational level were fear of automation, low support from leaders, low understanding of the subject from clients and colleges, unsuitable business models, and traditional processes. Furthermore, performance was found to be limited by computers and software capabilities.  Future research should focus on investigating solutions for the many challenges identified in this thesis. Additionally, further applications should be investigated in a narrower scope; a specific type of building or a general element, preferably avoiding repetition of applications in this study. It would also be of interest to investigate challenges of participants on an international scale, experienced with generative design and textual programming languages since these were found to be difficult to learn and apply.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)