First principles investigation of the thermal conductivity of Zr, ZrC, and ZrN

University essay from KTH/Fysik

Abstract: The thermal conductivity and electrical resistivity of Zr, ZrC, and ZrN were calculated using first-principles density functional theory (DFT) and the Boltzmann transport equation. The electron-phonon scattering was modeled via the self-energy relaxation time approximation (SERTA), and the phonon-phonon scattering via the analogous single-mode relaxation time approximation (SMRTA). The results obtained from Abinit's electron-phonon coupling code EPH is in good agreement with experimental reference data for Zr and ZrN. Notably, the calculated electrical resistivity of ZrC was found to be significantly lower than the available reference data, likely due to deviations from a perfect Zr/C stoichiometric ratio in the experimental samples. Additionally, it was observed that the calculated lattice thermal conductivity was overestimated at low temperatures, possibly attributed to the neglect of electron-phonon scattering that otherwise appears in metallic systems.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)