Towards an S3-based, DataNode-less implementation of HDFS

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The relevance of data processing and analysis today cannot be overstated. The convergence of several technological advancements has fostered the proliferation of systems and infrastructure that together support the generation, transmission, and storage of nearly 15,000 exabytes of digital, analyzabledata. The Hadoop Distributed File System (HDFS) is an open source system designed to leverage the storage capacity of thousands of servers, and is the file system component of an entire ecosystem of tools to transform and analyze massive data sets. While HDFS is used by organizations of all sizes, smaller ones are not as well-suited to organically grow their clusters to accommodate their ever-expanding data sets and processing needs. This is because larger clusters are concomitant with higher investment in servers, greater rates of failures to recover from, and the need to allocate moreresources in maintenance and administration tasks. This poses a potential limitation down the road for organizations, and it might even deter some from venturing into the data world altogether. This thesis addresses this matter by presenting a novel implementation of HopsFS, an already improved version of HDFS, that requires no user-managed data servers. Instead, it relies on S3, a leading object storage service, for all its user-data storage needs. We compared the performance of both S3-based and regular clusters and found that such architecture is not only feasible, but also perfectly viable in terms of read and write throughputs, in some cases even outperforming its original counterpart. Furthermore, our solution provides first-class elasticity, reliability, and availability, all while being remarkably more affordable.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)