Segmentation of People and Vehicles in Dense Voxel Grids from Photon Counting LiDAR using 3D-Unet

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: In recent years, the usage of 3D deep learning techniques has seen a surge,mainly driven by advancements in autonomous driving and medical applications.This thesis investigates the applicability of existing state-of-the-art 3Ddeep learning network architectures to dense voxel grids from single photoncounting 3D LiDAR. This work also examine the choice of loss function asa means of dealing with extreme data imbalance, in order to segment peopleand vehicles in outdoor forest scenes. Due to data similarities with volumetricmedical data, such as computer tomography scans, this thesis investigates ifa model for 3D deep learning used for medical applications, the commonlyused 3D U-Net, can be used for photon counting data. The results showthat segmentation of people and vehicles is possible in this type of data butthat performance depends on the segmentation task, light conditions, and theloss function. For people segmentation the final models are able to predictall targets, but with a significant amount of false positives, something that islikely caused by similar LiDAR responses between people and tree trunks.For vehicle detection, the results are more inconsistent and varies greatlybetween different loss functions as well as the position and orientation of thevehicles. Overall, we consider the 3D U-Net model a successful proof-ofconceptregarding the applicability of 3D deep learning techniques to this kindof data.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)