In-Plane Motion Correction in Reconstruction of non-Cartesian 3D-functional MRI

University essay from Datorseende; Tekniska högskolan

Abstract: When patients move during an MRI examination, severe artifacts arise in the reconstructed image and motion correction is therefore often desired. An in-plane motion correction algorithm suitable for PRESTO-CAN, a new 3D functional MRI method where sampling of k-space is radial in kx-direction and kz-direction and Cartesian in ky-direction, was implemented in this thesis work. Rotation and translation movements can be estimated and corrected for sepa- rately since the magnitude of the data is only affected by the rotation. The data were sampled in a radial pattern and the rotation was estimated by finding the translation in angular direction using circular correlation. Correlation was also used when finding the translation in x-direction and z-direction. The motion correction algorithm was evaluated on computer simulated data, the motion was detected and corrected for, and this resulted in images with greatly reduced artifacts due to patient movements. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)