Ferulic Acid – A Valuable Natural Compound for Sustainable Materials

University essay from KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Abstract: One of the largest problems that stands before us is the quest to find sustainable alternatives to fossil-based materials. Fossil-based products can be found all around us in our society. This quest has forced us to look for new ways to build materials. Synthetic polymer materials have traditionally been produced from fossil-based starting materials however, in modern times studies regarding biobased superseders for the unsustainable starting materials has been conducted.  One of these new potential building blocks is ferulic acid (FA) that is an aromatic cinnamic acid. FA has previously been used as an antioxidant but since it in addition is aromatic, have more than two functional groups and contains a double bond between two carbons it holds a large potential for polymeric synthesis.  FA has been isolated from agricultural side streams such as sugar beet pulp, flax shives, wheat- and corn bran through enzymatic release and pressurised low-polarity water extraction (PLPW).  One of the largest areas of use regarding FA is the biological applications. It has been proven to be effective protection against UV-radiation which open up possible uses in the textile industry, cosmetics and skincare. FA has also shown biomedical properties such as antiallergic, anti-inflammatory, anti-diabetic, anticarcinogenic and antiviral properties among others.  Two of the most common polymerization methods are free radical- and step-wise polymerization. FA shows great promise for the possibility to polymerize through both these methods since it has a double bond and more than two functional groups. Polymer materials produced from FA has been done with step-wise polymerization. The polymers showed thermostable and possibly biodegradable properties. Free-radical polymerization requires a monomer with a sterically unhindered double bond and for that reason the FA must be modified in order to polymerize using free radicals. This modified monomer has been produced in a small laboratory scale and can in theory be polymerized through radical polymerization. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)