Gas Emissions from Contaminated Fibrous Sediments in Sweden

University essay from Uppsala universitet/Institutionen för geovetenskaper

Abstract: Gas Emissions from Contaminated Fibrous Sediments in Sweden The discharge of untreated wastewater from pulp and paper mills have resulted in the accumulation offibrous sediments on the bottom of many nearby aquatic recipients. Some accumulations are multiplemeters thick and consist almost entirely of cellulose fibre or wood chips; these are called fiberbanks.The often hypoxic conditions and high organic content in fiberbanks makes them favourable for methaneproducing microorganisms, and gas release by ebullition has been observed. CH4 has high globalwarming potential and this study therefore aims to investigate GHG emissions from Swedish fiberbanks.Since methanogenesis is influenced by temperature and organic content, the gas ebullition is expectedto vary with season and between fiberbanks. As such it was necessary to examine differences inebullition rate, bubble volume and bubble quantity between different fiberbanks and to test the influenceof temperature on ebullition. To achieve this, the gas ebullition from two fiberbanks with very differentcomposition (Väja and Sandviken), were investigated using optical ebullition sensors measuring thequantity and volume of released gas bubbles. The ebullition measurements were performed in laboratoryat room temperature (20oC) and with sediments in incubation (4 – 15oC). The results indicate differencesin both ebullition rate and mean bubble volume between these two fiberbanks, with only minordifferences in the quantity of bubbles released. In a period of stable ebullition over five consecutivedays, sediment from Väja released 83 – 90% larger volumes of gas per day, and also produced bubblesthat were on average 67 – 89 % larger in volume when compared to Sandviken. The incubationexperiments show that ebullition from both fiberbanks increases exponentially with temperature, at ratessimilar to those found in natural sediments (Väja Q10 3.9, Sandviken Q10 4.9). The rate of accelerationin ebullition from both sediments is very strong >10oC, which is also similar to what has been observedin natural sediments. If estimating the combined GHG emissions from Swedish fiberbanks based on theresults from this study, it shows that fiberbanks could emit as much as 550 000 – 900 000 tonnes of CO2equivalents annually. That would correspond to 1.1 – 1.7% of the combined annual Swedish GHGemissions in 2018, and with fiberbank ebullition showing such a strong temperature dependence, thatestimate would grow rapidly when water temperatures increase with a warming climate

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)