Assessment of hydrogen supply chain for transport sector of Sweden

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Fuel cell electric vehicles, powered by hydrogen are an enticing alternative to fossil-fuel vehicles in order to reduce greenhouse gas emissions and consequently accomplish the environmental targets set to tackle the environmental crisis. It is crucial to develop the appropriate infrastructure if the FCEVs are to be successfully accepted as an alternative to fossil-fuel vehicles. This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs, that are coupled with the Swedish electricity system in order to study the inter-dependencies between them. The supply chain designs comprehend centralised production, decentralised production and a combination of both. The outputs of the hydrogen supply chain model include the hydrogen refuelling stations’ locations, the electrolyser’s locations and their respective sizes as well as the operational schedule. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain design is modelled to minimize the overall cost while ensuring the hydrogen demands are met. The mixed-integer linear programming problems were modelled using Python and the optimisation software was Gurobi. The hydrogen models were run for two different scenarios, one that considers seasonal variations in hydrogen demand, and another that does not. The results show that for the scenario with seasonal variation the supply chain costs are higher than for the scenario without seasonal variation, regardless of the supply chain design. In addition, the hydrogen supply chain design with the minimal cost is based on decentralised hydrogen production.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)