Quaternary Arctic foraminiferal isotopes: species reliability and palaeoceanographic application

University essay from Stockholms universitet/Institutionen för geologiska vetenskaper

Abstract: To investigate whether foraminiferal stable isotope (δ18O/δ13C) variations have potential as a chronostratigraphic tool in the Arctic Ocean, this thesis presents new δ18O/δ13C data from five marine sediment cores. Three of those are downcore analyses (PS92/54-1; TC/PC-03; PC-07) and the remaining two are core top analyses (PC-04; PC-08). Seven species of benthic foraminifera (Cassidulina neoteretis, Cibicides lobatulus, Cibicidoides wuellerstorfi, Oridorsalis tener, Quinqueloculina arctica, Stainforthia concava and Triloculina sp.) and one planktic (Neogloboquadrina pachyderma sinistral) were compared against physical properties data, foraminifera counts and existing age models. The stable isotopic data reveal species-specific niches, resulting from vital effects and habitat preferences. As changes in δ13C mainly are related to palaeoproductivity and ocean/atmosphere gas exchange, and has limited use as a dating tool, the focus has been to create high-resolution downcore δ18O records that can be compared to a global benthic stack. Cibicidoides wuellerstorfi is found to be the most common benthic foraminiferal species in the central Lomonosov Ridge cores (TC/PC-03 and PC-07) whereas C. neoteretis and N. pachyderma are most common at the Yermak Plateau (PS92/54-1). Usefulness of C. wuellerstorfi in the central Lomonosov Ridge cores is limited due to low amplitude changes in δ18O over periods interpreted to cover several Marine Isotope Stages. A similar issue was observed in C. neoteretis δ18O on the Yermak Plateau (PS92/54-1). There, C. neoteretis abundances were low during interglacials. Instead, planktic N. pachyderma δ18O at the Yermak Plateau site (PS92/54-1), more closely than any analysed benthic species, resembled the global benthic δ18O stack. This implies potential of N. pachyderma δ18O as a chronostratigraphic tool in this region of the Arctic. Using N. pachyderma δ18O to correlate distal cores in the Arctic Ocean would demand addressing the issues of regional differences in pelagic δ18O, varying calcification depths and poor preservation. Addressing why the range of variability differs between sites in the same MISs is crucial, before attempting to stack downcore δ18O from the relatively abundant Arctic benthic species C. neoteretis.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)