The response of ecosystems to an increasingly variable climate

University essay from Linköpings universitet/Linköpings universitet/Institutionen för fysik, kemi och biologiTekniska högskolan

Abstract:

A wide range of ecological communities ranging from polar terrestrial to tropical marine environments are affectedby global climate change. Over the last century, atmospheric temperature has increased by an average of 0. 60 C andis expected to rise by 1.1- 6.40C over the next 100 years. This rising temperature has increased the intensity andfrequency of weather extremes due to which a large number of species are facing risk of extinction. Studies haveshown that species existing on lower latitude are more sensitive to temperature variability compared to speciesexisting on higher latitude but temperature is increasing rapidly in higher latitude compare to lower latitude. Thisuneven distribution of temperature sensitive species and warming rate has highlighted the need for combined studiesof temperature variability and sensitiveness of species to predict how the ecosystems will respond to increasinglyvariable climate. Using a generalized Rosenzweig-MacArthur model, I explored how temperature variability andsensitivity of species will affect the extinction risks of species and how the connectance and species-richness ofecological communities will govern this response. This study showed that the risk of extinction of species mostlydepends on their sensitivity to temperature deviation from the optimum value and level of temperature variability.Among these two, sensitivity of species to temperature deviation was most prominent factor affecting extinction risk.In this study, connectance did not show any effect on mean extinction risk and time taken by a certain proportion ofspecies to reach pre-defined extinction thresholds. But, species-richness showed some effect on mean extinction riskof species. It was found that risk of extinction of species in species-rich communities was higher compared tospecies-poor communities. Species-rich communities also took shorter time before they lost 1/6 of the species. Thepresent study also suggests a possible tipping point due to increasing temperature variability in near future. In furtherstudies, different sensitivity of species at different trophic levels and the possible evolution of sensitivity of speciesshould also be consider while predicting how ecological communities will respond to changing climate in the longrun.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)