Additive weld manufacturing and material properties effect on structural margins

University essay from KTH/Lättkonstruktioner

Author: Daniel Arvidsson; [2018]

Keywords: ;

Abstract: the FE analyses. Traditionally all parts are modeled with isotropic base material. Analyses are made on a part of the nozzle which includes both a butt weld and metal deposition and which is an interface to another part causing loads that has to be sustained by the weld and the MD. As a small part of this thesis was also a fatigue study made to a spot weld test specimen. In order to strengthen the nozzle to prevent structural damage, an outer layer is added to the already existing metal cone by material deposition, MD, or additive manufacturing. During the manufacturing process the material will indicate some degree of anisotropic properties. The key purpose of this thesis was to analyze how this anisotropic behaviour might affect the structural stiffener connected to this anisotropic material when exposed to a load at the end of the stiffener. Further analysis due to fatigue was also done to parts of the structure. The procedure was done by building a model and setting up the different anisotropic properties with help of a finite element program, Ansys. The material properties regarding the anisotropy of the material was changed and compared in order to see how it affected stresses and strains in the anisotropic material and it‘s surrounding materials. Further analysis was made to the properties of the weld such as the yield limit. The result would indicate that for loadings that did not generate plastic deformations, hence elastic deformations, there were no significant difference forthe different trial values of the yield ratios. However, the differences became parent when studying large plastic deformations. Variation of the Young’s modulus would show some differences in the monitored properties for both elastic and plastic deformations. Studies of degrading the welds yield limit would show no diffrences when elastic deformations were present, but would have a big impact when large plastic deformations were present. The J-values variations for the spotweld would indicate huge differences depending on the yield limits for the spotweld and base material.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)