Numerical and experimental study of light-frame shear walls

University essay from Linnéuniversitetet/Institutionen för byggteknik (BY)

Abstract: In recent time, some of the construction processes of multi-storey timber buildings are achieved by using prefabricated volume modules since this method is very beneficial due to its high prefabrication level and the fast on-site assembly of the modules. The main structural component of these modules is a light-frame shear wall that stabilizes these modules from the effect of horizontal forces. A shear wall typically consists of timber frame with studs and rails and sheathing panels connected by dowel type fasteners to one or both sides of the frame. The structural behavior of shear wall and its racking performance is controlled by adequate design of its mechanical joints where sheathing-to-framing joints is the key issue in evaluating the overall behavior of shear wall. This study mainly deals with modelling of light-frame shear walls based on linear elastic characteristic for sheathing-to-framing joints. The objective of this study is to create two effective computer-based models (beam-spring-shell and beam-spring-shell-solid) to predict linear behavior of light-frame shear walls. In addition, the study deals with an experimental investigation of various types of short light-frame shear walls. Finally, the study compares modelling and experimental results to verify that they are in good agreement and that an efficient FE model is able to predict the structural behavior of shear walls for a short computational time. The study optimizes use of beam-spring-shell model which is as reliable as the beam-spring-shell-solid model, emphasizing its advantages over the resource-consuming solid model. The beam-spring-shell model is efficient and can be implemented and used for design and analysis of modular-based timber buildings.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)