Investigating a change of material on turning tools with Coromant Capto ® interface : A study conducted at Sandvik Coromant in Gimo

University essay from Luleå tekniska universitet/Produkt- och produktionsutveckling

Abstract: Sandvik Coromant is the leading supplier of cutting tools and solutions to the machining industry. Sandvik Coromant is the creator of the modular Coromant Capto ® tool interface which have since become an ISO-standard. The Coromant Capto ® interface, which currently is undergoing a revision is found in the machining applications turning, milling and drilling because of its unique characteristics. Sandvik Coromant's largest factory for cutting tools is located in Gimo which produces tools with the Coromant Capto ® interface for milling and turning applications. The turning tools with the Coromant Capto ® interface are currently produced from the tool steel 25CrMoS4, commonly known as SS2225 with a typical initial hardness of 28 ± 2 HRC. To achieve the required hardness of the finished tools, the turning tools are hardened by induction which results in hardness levels close to, or above 50 HRC. These induction hardening processes which are carried out after the machining operations induces geometrical distortions in the tools which impacts the quality of the finished product. Furthermore it is expected that the new revision of the Coromant Capto ® interface will be dificult to produce due to these geometrical distortions. To avoid the geometrical distortions due to induction hardening a change of material was examined. The turning tools with the Coromant Capto ® interface would instead be produced from the tool steel 34CrNiMo6, commonly known as SS2541. SS2541 is currently being used as material for the milling tools produced in Gimo. The tool steel SS2541 would imply a new process flow for the turning tools which would be hardened to 43,5 ± 2 HRC before the machining operations in a furnace thus avoiding the geometrical distortions. The purpose of the thesis was to study and predict the impacts and the changes that this new production process flow would lead to. The hypothesis of the whole study was claried as:"The change of material in Coromant Capto ® -equipped turning tools would be benecial in terms of the complete picture". To either prove or disprove the hypothesis research was conducted in three separate studies namely Quality, Time and Cost. A case study was used to compare the different process flows with each other. A sample of seven turning tools was studied within the case study. Each tool in the sample represents a portion of the real production volumes produced in Gimo. It was found that both product and process quality would increase with the material SS2541. Product quality would increase because the geometrical distortions would be avoided. This would increase value for the end customer which could expect a more predictable machining process. Process quality would also increase, mainly because control measurements will be carried out in a better way than in the current situation, and the fact that a simpler process flow with less operations will be true for SS2541. Process time increased for almost all material removal operations because the higher hardness of the material SS2541. Total process time would increase for the blanks and would decrease for the tools because the hardening operation are moved from tool to blank. The throughput rate of both blanks and tools will decrease, because the constraining operations or bottleneck operations would take longer time. Despite this it is expected that machine capacity is sufficient for producing the current production volumes from the material SS2541. The production cost for all tools in the sample will increase, one of the tools by as much as 11%. Production cost for a yearly production of turning tools (blanks included) is estimated to increase with 5%. The highest contributing factor to the increased cost is the initial cost of the material which will increase with 10%. To minimize the impact of material cost the range of blanks should be rationalized, i.e producing more tools from forged blanks instead from round blanks. To summarize and give an recommendation: The hypothesis of the thesis is confirmed. The change of material to SS2541 would seen to the complete picture prevent many problems to a relatively low cost. Therefore it is recommended that the material is changed from SS2225 to SS2541.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)