CFD Analysis of the Flow Around a Paraglider Wing

University essay from KTH/Teknisk mekanik

Abstract: In this study, the characteristics of the flow around a paraglider wing were investigated through the use of Computational Fluid Dynamics (CFD) simulations by solving both Reynolds Averaged Navier-Stokes equations and Delayed Detached Eddy Simulations were employed. This allowed the observation of how the unique shape of the canopy of a paraglider can influence the behaviour of the flow and how aerodynamic hysteresis can manifest on this sort of wing. Furthermore, the interaction between the highly deformable structure of the paraglider and the flow was examined through a two-way, loosely coupled Fluid-Structure Interaction (FSI) analysis. The methodology for the FSI analysis was first validated by employing a simplified model of the canopy before the full paraglider wing was analysed. Two different structural meshes were tested, using membrane elements or shell elements, respectively. The membrane element mesh prompted a collapse of the structure, while the mesh presenting shell elements allowed for a successful completion of the analysis.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)