Augmented Reality-Assisted Techniques for Sustainable Lithium-Ion EV Battery Dismantling

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The increasing adoption of electric vehicles (EVs) brings forth the challenge of effectively managing the second-life and end-of-life cycles for lithium-ion batteries. Augmented Reality (AR) offers a promising solution to sustainably and efficiently dismantle these batteries. This thesis explores the development and evaluation of an AR mobile app specifically designed for guiding the dismantling process of a Volkswagen (VW) ID.4 lithium-ion EV battery. Subsequently, a detailed end-to-end development pipeline is presented, spanning from identifying the correct dismantling steps and building complete 3D reconstructions of the ID.4 battery using photogrammetry and CAD or 3D modelling, to creating an AR mobile application in Unity with the help of Vuforia allowing users to visualize the disassembly steps through an interactive guide. Tracking recognition testing results for each model indicates that simpler models exhibit a higher chance of producing false positives, while composite models have a greater minimum recognition distance compared to the faithfulto-real-life one-piece counterparts. User testing is conducted using a hybrid approach, combining a Figma prototype with video recordings to replicate the app’s behavior in a safe environment, without the physical presence of a high voltage battery. Results show positive user feedback, demonstrating the app’s usability and effectiveness in guiding the dismantling process. Furthermore, the thesis evaluates the app’s performance through the System Usability Scale (SUS) and the Technology Acceptance Model. The obtained SUS score of 80 (Grade B - Good) indicates favorable usability, while the Technology Acceptance Model provides insights into potential users’ perceptions.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)