Analysis of hot workability in 316L steel using ductile fracture criterions

University essay from Luleå tekniska universitet/Institutionen för teknikvetenskap och matematik

Abstract: The focus of this thesis is to develop a simulation model for predicting ductile fractures during hot working at Alleima. The main fracture mechanism in these conditions is ductile fracture by void coalescence. The ductile fractures are caused by the linking of voids that appear when there is large plastic deformation near second-phase particles. The chosen method to simulate these was to use a Ductile Fracture Criterion (DFC), which builds on using FE models with a damage parameter. Two criteria were selected to be tested. The austenitic stainless-steel alloy 316L was selected as material for this work. Using the Gleeble 3500 system, hot tension and compression experiments were performed to gather data needed for the simulation models as well as inducing ductile fractures. Rupture occurred for all the hot tension samples and cracks were found for only one of the hot compression experiments. Using data from the Gleeble tests, a separate simulation model for each of the setups were created using the finite element software Marc/Mentat. A flow stress model for 316L was developed. Results from the simulations show that both selected DFCs can be used to predict ductile fractures. Particularly for hot tension. It was shown that it is important to model the temperature gradient in the sample accurately. For hot compression, it was difficult to conclude if the criterions were able to predict fracture since only one data point was available. The thesis concludes that there could be of interest with continued work using DFCs at Alleima. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)